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SUMMARY

The coefficients for a nine-point high-order-accurate discretization scheme for an elliptic equation V2u — y2u = r,
(V? is the two-dimensional Laplacian operator) are derived. Examples with Dirichlet and Neumann boundary
condtions are considered. In order to demonstrate the high-order accuracy of the method, numerical results are
compared with exact solutions.
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1. INTRODUCTION

The process of computational solution of a partial differential equation (PDE) involves a discretization
procedure by which the continuous equation is replaced by a discrete algebraic equation. The
discretization procedure consists of an approximation of the derivatives in the governing PDE by
differences of the dependent variables which are computed only at discrete points (grid or mesh points).
The discretization of the continuous problem inevitably introduces an error in computing the derivatives
and, as a result, an error in the computational solution. In general, one starts with a given PDE and uses a
discretization procedure for developing a finite difference equation (FDE). Then, with the aid of a Taylor
series expansion about the node at which the derivative is evaluated, the PDE can be rewritten in the
form PDE = FDE + TE, where the remainder TE is the truncation error. One can estimate the numerical
solution error for a finite difference representation as the order of the leading term in the remainder,
which can be considered as a close approximation to the error provided that the grid size is small.
However, the complete evaluation of the numerical solution error must be based on comparison with the
exact solution. The numerical solution error can be decreased if the leading derivative terms in the TE
can be directly replaced using the differential equation. In this paper we develop a high-order-accurate
nine-point discretization stencil for an elliptic equation which describes the problem of fully developed
laminar flow in a rectangular duct and the torsional stress problem in elasticity.

2. DEFINITIONS

Computational domain G. Let a rectangle G = {0<x</,,0<y</} be a two-dimensional
computational domain. Let two discrete equally spaced sets w, and w, of points be defined by

w,={x() =ik, i=0,1,..., M, hM =1}, (n

w, ={¥(j)=Jjh,j=0,1,...,N,h,N =1L} (2)
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Computational grid Q. Let a computational grid Q on the domain G be a set of points defined by
Q =0, xw,={o,; =(h, jh),i=01,....M,j=0,1,...,N}

Each (i, j)th node of the grid Q refers to a point with co-ordinates x(i) and y(j) defined by equations (1)
and (2). The grid Q 1s equally spaced in the x- and y-direction.

Boundary and internal nodes. The nodes [(0, ), ¥/], (M, /). V)], [(i, 0), Vi] and [(i, N), Vi] are
boundary nodes. The nodes [(i, j),i # 0 or M, j # 0 or N] are internal nodes.

Grid function f; ;. Let a function f(x,y) be defined on the domain G. A discrete function
fi.j =S y;), where x; = x(i) € w, and y; = ¥(j) € w,, is a grid representation of f(x,y) on the
computational grid Q.

Nine-point stencil af‘?. Let (i, j) be an intemal node in the computational grid Q. Let a nine-
point discretization stencil ag) about a central node (i, ) be defined by

O _

o) =W, p=i—Lii+1,g=j—1,j,j+]1}, G)

where w, , € Q.
Taylor series expansion on a?;). Let a discrete function f; ; be defined on af‘?. A Taylor series
expansion of f; ; about the central (i, j) node is

20
fi+p.j+q =f;j + Zl '@’;q ij (4)

1
@Z‘-q ='7!(phxDx+qhyDy)mv P,q = _1, 0, ].

In equation (4), DY = 9/0x™ and D' = 3/3y™ are differential operators.
Discrete equation on af?. Let any linear relation between nine discrete values u,, , computed on ¢
ie.

©)
ij*

i+l i+l
Apathp ¢ = 0, (5)
p=i—-1 g=j-1

be a discrete equation for a function u(x, y). Hereafter, coefficients a,, will be called the og)-stencil
coefficients.

Modified equation on 053.). We consider a linear partial differential equation of the second order in two
independent variables:

LOU + LY+ LO% + f(x,y) = 0. 6)
In equation (6) the operators L@, L) and LY are
L(O) =, L(l) = C]Dx + CzD , L(z) = a“Di + ZalszDy + 022D§, (7)

where ¢, ¢y, ¢, and a,, a,,, a5, are known coefficients and f(x, y) is a known function. Let us substitute
Taylor series expansions (4) about the node (i, ;) € 0,(.3) into a discrete equation (5) for each u, .. The
Taylor series expansions (4) include the differential operators and we can formally rearrange the discrete
equation into the form

LOu ;+ 1, ,+ 1O, ,+f, , =TE. (8)
Here L@, L) and L@ are operators given by

i(o) = E‘, 1:(1) = z’le + E'zD N 24(2) = a”Di + 2&]2DXD), + azzDz, (9)
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where the coefficients ¢, 2,, ¢, and &;,, @,. @,, depend on the coefficients 2 a,, of the a »-stencﬂ The
right-hand side of equation (8), which is called the truncation error TE, consists of hlgh order terms
(derivatives) and can be expressed as
oc R r
TE= Y. L1 [ =% a,hrh, "DrD;™. (10)
r=s23 m=0

If the 6% )-stencd coefficients a,, are chosen such that L@ = L@ [ = LD and L©® = 1O then
equation (8) is called the modified equation' of equation (6). It is the PDE that is actually solved when
the original equation (6) is discretized using a finite difference approach. The right-hand side (7E) is the
difference between the original PDE and its finite difference approximation (FDE). The lowest-order
term of TE gives the accuracy order of the discretization method applied to the original PDE. For
example, the truncation error in equation (10) is O(4*).

We recall two ways of increasing the aceuracy order of a finite difference equation on a given
discretization stencil. (a) The stencil coefficients a a,, are chosen to make the accuracy order (s in
equation (10)) as high as possible (in other words, as many as possible first terms of TE are set to zero).
(b) Using the original PDE, as many as possible first terms of TE are expressed in terms of the original
PDE operators (L@, LV and L® in equation (6)) and are moved to the left-hand side of the discrete
equation; then the discretization stencil coefficients a,, are chosen in order that the discrete equation
will be the modified version of the original PDE.

3. NINE-POINT STENCIL FOR (V2 — y%)u = r,
We consider an elliptic equation
Vzu—72u=(D2+Dz)u—y2u=ro, (1

where 7 and rO are constants and V2 =D+ D? is the two-dimensional Laplacian operator
(D? = 3/ax?, D? = 3/3*). Our goal is to convert equatxon (11) to a high-order-accurate difference
equation wntten at each internal node (i, /,) € a( )

ije
We choose the discrete equation for (11) on the nine-point o( )

au; ; + bS + cSE + dSY) = r,, (12)

-stencil in the form

where

%)
Sﬁ_,- SR REE o R L TR RN

x) _ ) —
Sf,j—“i—l,j'*'“mjv S?'—ui.j—l + Ui

Owing to the symmetry of the sums S"’.) , Sf’? and S(y ) about the central node (i, J), upon substituting the
Taylor series expansions into equatnon (12), the resulting equation consists of only even-order
derivatives: DZ, D2, D}, DID?, D3, DS, DZD}), ... . The derivation of the o j)-stencﬂ coefficients is
described in Appendix I. The coeﬁ”lcients are summanzed in Table I. The derivation is performed using
a symbolic operator procedure. The same expressions for the coeﬁicients could be obtained using the
differential finite difference method presented by Arad et al.> The truncation error for A, # h,

oK, hﬁhf,, k%), while for k. = h, = h it is O(K®). Coefﬁcxents for the last two cases (y = 0) are known
as ‘a nine-point formula’ for the Laplace operator.' This formula provides high-order accuracy for the
Laplace equation. However, the truncation error is only O(kZ2, h2) or O(h*) if the same coefficients are
used for discretization of the first two cases with y # 0. The coefficients of the discretization scheme,
which have been derived using the original PDE and are presented in Table I, enable us to increase the

accuracy up to the fourth or sixth order.
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Table I. Summary of nine-point discretization stencil coefficients, 4, = s2/2! + (s*/4!)y? + (s°/6)y*

Case a i’ i ’
| Ay K20+ B22) + 4, K20+ K2 1
y# 0, #h, oLy D TR %
4 A, 204, Ay H212124 + (B2 + h2)y?] 24;, 24,
5 20 + By : 1
o 2 _* 4 ———— m, 0 g
y#EOh =h,=h -y 2t 204,(12 + h2y?) W,
y=0,h #h _S+ k) "+ h Bk ok
hh, R 1273 o oRE
10 ! . :
'Y=0’hx=h}’=h YY) 60 W i

The nine-point stencil developed in this section is appropriate for internal nodes of the computational
domain. For Dirichlet boundary conditions the only source of errors in the numerical solution arises
from the discretization of the governing equation. Neumann boundary conditions require discretization
of the derivatives at the boundary. In general it is necessary to express Neumann condition in a discrete
form with at least the same truncation error as the discretization scheme used for the governing
equation. The lower accuracy of the solution at the boundary will contaminate the accuracy of the
numerical solution in the interior nodes. In Appendix II we present the high-order-accurate
discretization of the Neumann boundary condition for equation (11) using the fictitious (dummy)
nodes approach.

4. NUMERICAL RESULTS

In this section we present numerical results which were obtained using the high-order discretization
stencil and compare the accuracy with exact solutions.

For y = 0 the problem defined by equation (11) is equivalent to the problem of fully developed
laminar duct flow” and to the torsional stress problem in elasticity.* Fletcher® considered this problem
and presented a special program (DUCT) for its numerical solution. Different (finite element and finite
difference) methods for discretization are implemented by the programme DUCT. For the cases with
y # 0 which are considered in this section, we slightly modified the programme DUCT. The high-order-
accurate discretization procedure developed here does not change the general structure of the matrix
involved in the programme DUCT. Only the matrix coefficients should be calculated according to the
nine-point ag.)-stencil. Therefore the convergence rate of any solution method (direct or iterative)
applied to the problem and discussed in detail by Fletcher’ is not affected by the suggested discretization
procedure. However, owing to the high-order-accurate discretization, the suggested scheme provides a
significant improvement. The computational work required to achieve a given accuracy with the nine-
point ag.)-stencil is orders of magnitude less than the computational efforts with the standard five-point
finite difference discretization, because a much coarser grid is needed for the computation.

In all our calculations the Gauss—Seidel iterative method with successive overrelaxation implemented
in the programme DUCT® has been used. We use the relaxation parameter w = 1-65. The accuracy of
the results (numerical versus exact) is analysed with grid refinement.



DISCRETIZATION STENCIL FOR AN ELLIPTIC EQUATION 371

Case 1: y2 = H2, vy = —1, duct flow

We consider the two-dimensional problem
—+——Hu=-1, Ix|<a, ¥l <b, wEa, ) =ux,£b)=0. (13)

For H # 0 the problem defined by equation (13) is equivalent to the problem of steady, fully developed
magnetohydrodynamic laminar flow in a rectangular duct with non-conducting walls, where H is the
Hartmann number. The exact solution for this problem was first obtained by Shercliff.® The exact
solution of equation (13) is readily obtained using the method of separation of variables and there are
different forms of this solution. Here we present the solution in the form

) = T Up)sinliny + ),

4 cosh(u,,x) ’ P n(2m — 1)
Un(x) n(2m — 2, ( cosh(uma))’ o = H+ T, A 2b (14

The main feature of the exact solution given by equation (14) is a very severe near-wall gradient at high
Hartmann numbers H. From the computational point of view, for such boundary layer solutions a certain
grid refinement should be used as the near-boundary gradient becomes sharper (increasing H). The
order of the solution error coincides with the order of the truncation error if the grid spacing is
sufficiently small. In the case at hand, at high values of H one can expect that the estimated numerical
solution error will be achieved only for a very fine grid.

In Figure 1, for different grid spacings, we plot the numerical solution error Error = |ju; — ug‘})”m,
where the exact solution use]) is evaluated from equation (14) at each (i, j)th node. We consider a square
(@=0b=1) duct and hence h, = h, = h =2/N. Figure 1 clearly illustrates the superiority of the
suggested high-order discretization. Let us assume that an engineering accuracy of 0-1% (ie.
Error =1072 in Figure 1) in the RMS error of the computational solution is required. Then, as can be
deduced from Figure 1, for the severe case of H = 10, i.e. a sharp near-wall gradient, A ~ 1/3 is
required if the presently proposed ag) -stencil is used, in contrast with # & 1/35 which is required if the
standard five-point discretization is applied. Since, as mentioned above, A = 2/N, this implies that the
proposed discretization scheme enables a reduction of the mesh from 70 x 70 to 6 x 6 while keeping
the error at the 0-1% level.

It should be noted that it is difficult to conduct an accurate comparison between the numerical and
exact solutions of the problem given by equation (13), because the rate of convergence of the infinite
series (14) decreases for higher values of H. One can see that the standard five-point finite difference
discretization scheme provides a numerical solution error of O(h?) as predicted (the slope of the five-
point FD curves is equal to 2). The high-order afi’-stencil discretization gives an accuracy of
approximately O(h*) and not of O(h®) as predicted. This discrepancy deserves an explanation. The
O(h%) accuracy will apparently be achieved at # <0-01 (i.e. — log(k) > 2 in Figure 1). However, the slow
convergence of the infinite series given by equation (14) requires accounting for many terms in the
series (especially for high values of H). This in turn leads to an inevitable accumulation of machine
round-off errors. In addition, the very small expected accuracy (less than O(107'2)) makes the
numerical implementation very difficult.
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Figure 1. Numerical solution error for different computational meshes (Case 1, duct flow)

Case 2: y* = H?, xy = —1, Dirichlet boundary condition, soluble example

In order to demonstrate the high-order solution accuracy of the proposed a -stencﬂ we consider the
two-dimensional problem

Pu Fu
'ax—2+?@—“H u=—1, Ostl, OSysl,
1 0 1 1) = i 1
“(Q}’)—‘—“(LJ’)‘—’E’ u(x, )=I_?a u(xv )—sm(nx)-!-ﬁ. (15)
The exact solution is given by
sin(nx) sinh(ety) 2 2 )
=l = H-.
u(x, y) Sinh(a) g o =n"+ (16)
In Figure 2, as in the previous example, we plot the numerical solution error Error= || Y (e) 7 lems>

where 4(® is the exact solution evaluated from equation (16) at each (i, ))th node. The results obtalned
with the suggested o ?-stencﬂ clearly show the sixth-order solution accuracy, Error=O(h®), on a
square mesh, 4, = A, = h. On an unequally spaced mesh (h, = = 2h,) the numerical solution error with
the suggested ali)-stencﬂ discretization increases and becomes of the fourth order. The five-point FD
discretization gives a second-order solution accuracy.



DISCRETIZATION STENCIL FOR AN ELLIPTIC EQUATION 373
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~log(Error)

-log(h)

Figure 2. Numerical solution error for different computational meshes (Case 2, Dirichlet condition, soluble example)

Case 3: y* = H2,ry = —1, Neumann boundary condition, soluble example

In order to demonstrate the effect of the accuracy of the Neumann boundary condition discrete
approximation on the numerical solution error, we consider the two-dimensional problem

82u Pu
— sx<l, Osy<l,
a2t~ Hu=-1 0<x<l, 0gysl
1 1 .
u(0,y) =u(l,y) = 7k u(x, 0) = 7 u,(x, 1) = asin(mx) coth(a). a7
The exact solution of the problem is given by
sin(rx) sinh(aty) 5 2 )
W=+, = H-.
u(x, ) sinh(a) H? v=rt (18)

For the numerical solution we use a square mesh, i, = h, = h. In Figure 3 we plot the numerical
solution error Error = [ju;; ||rms Only the calculatlons obtalned with the suggested nine-point 0'(9)

stencil and the sixth-order-accurate Neumann condition discretization result in a sixth-order solutlon
accuracy, Error = O(h®). With the second-order-accurate discretization of the Neumann condition the
numerical solution error with the suggested nine-point a( )-stencxl discretization increases and becomes
of the second-order only. In this case the low accuracy of the boundary derivative discrete approximation
overrides the high-order accuracy provided by the scheme with the nine-point a,(-? -stencil. The five-
point finite difference discretization gives a second-order solution accuracy as expected.
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Figure 3. Numerical solution error for different computational meshes (Case 3, Neumann condition, soluble example)

5. CONCLUSIONS

We derive the coefficients for a nine-point discretization scheme for an elliptic equation
V2u — y2u = ry(V? is the two-dimensional Laplacian operator). The truncation error for the suggested
scheme is of the sixth order, O(k®), on a square mesh (h, = h, = h) and of the fourth order,
O(k}, k2%, h}), on an unequally spaced mesh. The performance of the suggested discretization scheme
is demonstrated on three examples and is compared with that of the standard five-point discretization
formula. Examples with Dinichlet and Neumann boundary conditions are considered to demonstrate the
high-order accuracy of the method.

APPENDIX I: DERIVATION OF THE aE?-STENClL COEFFICIENTS
Let

au, , + bSi"'j + CS,(XJ + dS,(yj =rg (19)

©) -stencil, where

be a discrete equation on the nine-point o,

xy) __
Sx(., SU_y g U e T o T U

)
Sszui—l./+“i+1./- S,‘(,v,)'=“:.j-| +u - (20)



DISCRETIZATION STENCIL FOR AN ELLIPTIC EQUATION 375

The Taylor series expansions on a( ) 4

o 1
uiil’j:tl = ui, j + mz-:l ;n—'(:l:hXDX + hyDy)mui’j. (21)

Substituting expansions (21) into (20) leads to

2m 2nh2n

s<"¥>_4u,,+4z z

D2m —2nn2n
2 & Gm—2miany e D

m

(x) 2m,, o)
Slj l_]+2mz_-:l (2 )'D 1]1 S _2u11+22 (2 )! ui,j' (22)
Substituting (22) into (19) and keeping derivatives up to the sixth order in the left-hand side give
h s kz n RS
[(41; + 2c)( XD 4 "D“ +5 06) +(4b + Zd)( 4{ D + 6y' 06)
h2h2 h4h2 . h2h4
X"y 2 Xy XY 2nd —
+4b<2,2, D;D; + + ipr D5 D+ Sy DD ) +(a+4b+ 2c+2d)}u,.,, =ry+TE. (23)
Using (11) enables one to rewrite the high-order derivative operators in the lefi-hand side of (23) as
D} =*D} - DD, D} =D} - DDZ,
D; =y'D{ - y’DiD; - DD}, DS = y*D —y*DID? — DD, (24)

Substituting (24) into (23) gives
(@, D} + 25D§D§ + 522D§ + Ggo)u; ; + (842D2D§ + g24DJ2cD;)ui,j =ry+TE, (25)

where gy, = g(h,, hy; b, c,d) and g,, = g(h, h,; b, c,d). We note that for an equally spaced grid,
h, = h,, owing to x <> y symmetry of the elliptic equation, ¢ =4 in (19) and hence g4, = gy
Therefore it is useful to rewrite the second term on the left-hand side of (25) as

gyt 8 8 — &
8a Dy D2 + g24D2D4 S SR 2 H (D)‘:Dﬁ + DED;) + *4—22—2—4(D§D§ — DZD})

+ ' g
— 28t 8u : 84 prpr 4 82 _8n > (DiD; — DiDY), (26)

because the second term in (26) vanishes on the equally spaced grid. Adding the first term of (26) to the
mixed derivative term of (25) and moving the second one (which is actually the leading term of the
truncation error) to the right-hand side of (25) complete the rearrangement of the discrete equation,
which now reads

(@, D} + 2512D§D§ +ayDi + ago)u; ; = ry + TE, (27)
where the truncation error is estimated as

TE ~ 5‘%&:‘_ (D!D2 — DDy, ;. (28)
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The coefficients &pq in (27) depend on the grid spacing h,, h, and on the of?~stencil coefficients

a, b, c,d. In order for (27) to become the modified equation of the original equation (11), we require
g = —7°, a; =1, a;, =0, ap =1, (29)

which is a linear system for four unknown coefficients a, b, ¢, d. We omit simple algebra and summarize
the coefficients in Table L

APPENDIX II: NEUMANN BOUNDARY CONDITIONS
Assume that the Neumann boundary condition du/dy|,_, = g(x) is imposed at the boundary y = 0. Let

au;g + bSY + cS{y +dS{y = ro (30)
be the nine-point af‘i)-stencil applied at a boundary point (i, 0), where
SEe” = iy oy F g e s

Xy _ o) _
91(0 =U_10+ Uy 0 Sio =yt

Here (k, —1),k =i —1,i,i+ 1, denote the fictitious (dummy) nodes which are used in the nine-point
0,(3)-stencil and lie outside the computational domain. The Taylor series expansions for the dummy
nodes read

(:i:l) d"u
Ug +1 hmD)’"A)uk 0 D,"A’)“k,o = D;:)“ =3 (31)
dxml g
where, and hereafler, b, = h, k =i —1,i,i+ 1. From (31) we have
o h2m 1 m—1
Uy = Ug —22 (2m—1)'D2 Ug 0 (32)
Using (11) enables one to rewrite the odd-order y-derivative operators in the recurrent form
D u=? -D)D"u, m=2.3,.... (33)
Applying (33) at the boundary point y = 0 gives
DX 'u=*-D)" 'gx), m=2,3,.... (34)
From (32) and (34) we obtain explicit expressions for the dummy nodes:
2m 1
Up ) =) — 22 l)'(y —-D)" g, k=i-1,ii+]1. (35)
m=1
For the sixth-order-accurate case we have
3 th 1
Up | =y, — 22 1)‘(,:2—Df)’""g(x)+0(h6), k=i—1,ii+1. (36)

Substituting expressions (36) for the dummy nodes into (30) gives the sixth-order-accurate
discretization of the Neumann boundary condition for (11).
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