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SUMMARY 

The coefficients for a nine-point high-order-accurate discretization scheme for an elliptic equation V2u - $u = r, 
(V2 is the two-dimensional Laplacian operator) are derived. Examples with Dirichlet and Neumann boundary 
condtions are considered. In order to demonstrate the high-order accuracy of the method, numerical results are 
compared with exact solutions. 
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1. INTRODUCTION 

The process of computational solution of a partial differential equation (PDE) involves a discretization 
procedure by whch the continuous equation is replaced by a discrete algebraic equation. The 
discretization procedure consists of an approximation of the derivatives in the governing PDE by 
differences of the dependent variables which are computed only at discrete points (grid or mesh points). 
The discretization of the continuous problem inevitably introduces an error in computing the derivatives 
and, as a result, an error in the computational solution. In general, one starts with a given PDE and uses a 
discretization procedure for developing a finite difference equation (FDE). Then, with the aid of a Taylor 
series expansion about the node at which the derivative is evaluated, the PDE can be rewritten in the 
form PDE = FDE + TE, where the remainder TE is the truncation error. One can estimate the numerical 
solution error for a finite difference representation as the order of the leading term in the remainder, 
which can be considered as a close approximation to the error provided that the grid size is small. 
However, the complete evaluation of the numerical solution error must be based on comparison with the 
exact solution. The numerical solution error can be decreased if the leading derivative terms in the TE 
can be directly replaced using the differential equation. In this paper we develop a high-order-accurate 
nine-point discretization stencil for an elliptic equation which describes the problem of !idly developed 
laminar flow in a rectangular duct and the torsional stress problem in elasticity. 

2. DEFINITIONS 

Computational domain G. Let a rectangle G = (0 < x  < l,, 0 < y < l,,} be a two-dimensional 
computational domain. Let two discrete equally spaced sets 0, and wy of points be defined by 

w, = (x(i)  = ih,, i = 0, 1 , .  . . , M ,  h,M = lx ) ,  (1) 

wy = ( y ( j )  = j h y ,  j = 0, 1, . . . , N ,  h,,N = ly} .  
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Computational grid Q. Let a computational grid R on the domain G be a set of points defined by 

Q = w , x o  Y = { w i , j = ( i h , , j h y ) , i = O , l  ,..., M , j = 0 , 1 ,  ..., N } .  

Each ( i ,  j)th node of the grid R refers to apoint with co-ordinates x(i) andyO) defined by equations (1) 
and (2). The grid f2 is equally spaced in the x- and y-direction. 

Boundary and internal nodes. The nodes [ (0 ,  j ) ,  V j ] ,  [ ( M ,  j ) ,  V j ] ,  [( i ,  0) ,  Vz] and [(i ,  N ) ,  Vi] are 
boundary nodes. The nodes [ ( i ,  j ) ,  i # 0 or M, j # 0 or N] are internal nodes. 

Grid function f ; . j .  Let a function f ( x , y )  be dehed  on the domain G.  A discrete function 
1;. = f (x,. yi), where xi  = x( i )  E w, and yj = y(j) E my, is a gnd representation off  (x, y )  on the 
computational grid R. 

Nine-point stencil a:;). Let ( i , j )  be an internal node in the computational grid R. Let a nine- 
point discretization stencil 01;) about a central node ( i ,  j )  be defined by 

(3 1 (9 )  - ai j  - (wP. , ,p  = i - 1, i ,  i + 1, q = j  - 1, j ,  j + l}, 

where E IR. 

expansion off,, about the central ( i ,  j )  node is 
Taylor series expansion on of. Let a discrete function 1;. be defined on a!;). A Taylor series 

30 

f ; + p . j + q  =A. j + C ~ ~ , q f ; .  jv (4) 
m= 1 

In equation (4), 0;" = a/&? and 

i.e. 

= a/V are differential operators. 
Discrefe equation on a!:). Let any linear relation between nine discrete values up,q computed on a:;), 

be a discrete equation for a function u(x,y) .  Hereafter, coefficients ipq will be called the aj;)-stencil 
coefficients. 

Modified equation on r~j;). We consider a linear partial differential equation of the second order in two 
independent variables: 

L(2)u + L(')u + L(O)U + f (x, y )  = 0. (6 )  

(7) 

In equation (6) the operators LC0), L ( ' )  and L(') are 

L'O' = c, 15'') = c1 D, + c2DY, = a I l q  + 2a12DxDy + a 2 2 q .  

where c, c1 , c2 and a l  a 1 2 ,  a22 are known coefficients and f (x, y )  is a known function. Let us substitute 
Taylor series expansions (4) about the node (i,  j )  E a;;) into a discrete equation (5) for each up,q. The 
Taylor series expansions (4) include the differential operators and we can formally rearrange the discrete 
equation into the form 

i(2)u,,  , + i(l)u,, , + i%,,, +f;,, = TE. (8) 

Here i ( O ) ,  i ( l )  and i(2) are operators given by 

i ( 0 )  = ?, i ( l )  = ?,Dx + ?2Dy, i(') = illg + 26,,DXDy + i 2 2 q 9  (9) 
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where the coefficients S, ?,, Sz and i l l ,  ZIz ,  i22 depend on the coefficients iM of the a!?-stencil. The 
right-hand side of equation (8), which is called the truncation error TE, consists of high-order terms 
(derivatives) and can be expressed as 

X 

TE = C i(r)~i, , ,  icr) = a,h;h;-mEDry-m. (10) 
r=s 2 3 m=O 

If the a$)-stencil coefficients ipq are chosen such that i(2) = L(2), i ( l )  = L(I) and i ( O )  = Lc0), then 
equation (8) is called the modified equation’ of equation (6).  It is the PDE that is actually solved when 
the original equation (6) is discretized using a finite difference approach. The right-hand side (TE) is the 
difference between the original PDE and its finite difference approximation (FDE). The lowest-order 
term of TE gives the accuracy order of the discretization method applied to the original PDE. For 
example, the truncation error in equation (1 0) is O(W). 

We recall two ways of increasing the accuracy order of a finite difference equation on a given 
discretization stencil. (a) The stencil coefficients ipq are chosen to make the accuracy order (s in 
equation (10)) as high as possible (in other words, as many as possible first terms of TE are set to zero). 
(b) Using the original PDE, as many as possible first terms of TE are expressed in terms of the original 
PDE operators (Leo), L(’)  and L(’) in equation (6)) and are moved to the left-hand side of the discrete 
equation; then the discretization stencil coefficients ipq are chosen in order that the discrete equation 
will be the modified version of the original PDE. 

3. NINE-POINT STENCIL FOR (Vz - ?’)U = ro 

We consider an elliptic equation 

(1 1) 2 v2u - y2u = (@ + $)u - y u = ro, 

where y and ro are constants and V2 = +% is the two-dimensional Laplacian operator (e = a/&?, = a/@). Our goal is to convert equation (1 1) to a high-order-accurate difference 
(9) equation written at each internal node (i ,  j, ) E (T, . 

We choose the discrete equation for (1 1) on the nine-point c$-stencil in the form 

where 
X y )  - 

1.1 - - u;-1.j-1 + ui-i.j+l + ui+l,;-i + ui+l.j+l* 
q; = ti;,;- I + u;,;+ 1. q;. = Ui-1.j + u;+1,;, 

Owing to the symmetry of the sums $7). S$ and $”!. about the central node (i, j), upon substituting the 
Taylor series expansions into equation (12), the resulting equation consists of only even-order 
derivatives: q, q, q, qq, q, @, eq, . . . . The derivation of the aj;)-stencil coefficients is 
described in Appendix I. The coefficients are summarized in Table I. The derivation is performed using 
a symbolic operator procedure. The same expressions for the coefficients could be obtained using the 
differential finite difference method presented by Arad et aL2 The truncation error for h, # h,, is 
O(h2, hih;, h;), while for h, = h,, = h it is O(h6). Coefficients for the last two cases (y = 0) are k n o ~  
as ‘a nine-point formula’ for the Laplace operator.’ This formula provides high-order accuracy for the 
Laplace equation. However, the truncation error is only O(h:, h,) or O(h4) if the same coefficients are 
used for discretization of the first two cases with y # 0. The coefficients of the discretization scheme, 
which have been derived using the original PDE and are presented in Table I, enable us to increase the 
accuracy up to the fourth or sixth order. 
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Table I. Summary of nine-point discretization stencil coefficients, A, = s 2 / 2 !  + (s4/4!)y2 + (s6/6!)r4 

Case a b C d 

2 20 + h2y2 
Y # 0 ,  h, = hy = h -y2 - - + + b  

Ah 2 0 4 ( 1 2  + h ’ f )  

Y = 0, hx # hy 

10 
3h2 

-_ 1 
6h2 
- 

26 -- 2b 
1 -_  

2Ah 24h 

2 - 2 - 
3h2 3h2 

The nine-point stencil developed in this section is appropriate for internal nodes of the computational 
domain. For Dirichlet boundary conditions the only source of errors in the numerical solution arises 
from the discretization of the governing equation. Neumann boundary conditions require discretization 
of the derivatives at the boundary. In general it is necessary to express Neumann condition in a discrete 
form with at least the same truncation error as the discretization scheme used for the governing 
equation. The lower accuracy of the solution at the boundary will contaminate the accuracy of the 
numerical solution in the interior nodes. In Appendix I1 we present the high-order-accurate 
discretization of the Neumann boundary condition for equation (11) using the fictitious (dummy) 
nodes approach. 

4. NUMERICAL RESULTS 

In this section we present numerical results which were obtained using the high-order discretization 
stencil and compare the accuracy with exact solutions. 

For y = 0 the problem defined by equation (1 1) is equivalent to the problem of fully developed 
laminar duct flow3 and to the torsional stress problem in elasticity! Fletche? considered this problem 
and presented a special program (DUCT) for its numerical solution. Different (finite element and finite 
difference) methods for discretization are implemented by the programme DUCT. For the cases with 
y # 0 which are considered in this section, we slightly modified the programme DUCT. The high-order- 
accurate discretization procedure developed here does not change the general structure of the matrix 
involved in the programme DUCT. Only the matrix coefficients should be calculated according to the 
nine-point a!y)-stencil. Therefore the convergence rate of any solution method (direct or iterative) 
applied to the problem and discussed in detail by Fletcher’ is not affected by the suggested discretization 
procedure. However, owing to the high-order-accurate discretization, the suggested scheme provides a 
significant improvement. The computational work required to achieve a given accuracy with the nine- 
point a(g)-stencil is orders of magnitude less than the computational efforts with the standard five-point 
finite difference discretization, because a much coarser grid is needed for the computation. 

In all our calculations the Gauss-Seidel iterative method with successive overrelaxation implemented 
in the programme DUCT’ has been used. We use the relaxation parameter o = 1.65. The accuracy of 
the results (numerical versus exact) is analysed with grid refinement. 

! J  
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Case I: y2  = H2, ro = -1, ductflow 

We consider the two-dimensional problem 

a2u a2u 2 

ax2 ayz -+ -- H u = - 1 ,  1x1 Ga, IYI G b, u(* a, y )  = u(x, k b) = 0. (1 3) 

For H # 0 the problem defined by equation (1 3) is equivalent to the problem of steady, fully developed 
magnetohydrodynamic laminar flow in a rectangular duct with non-conducting walls, where H is the 
Hartmann number. The exact solution for this problem was first obtained by ShercliK6 The exact 
solution of equation (1 3) is readily obtained using the method of separation of variables and there are 
different forms of this solution. Here we present the solution in the form 

n(2m - 1) 
2b . (14) ( 1 -  p i  = H 2  +&, Am = 

n(2m - 1)pi cosh(,u,a) um(x) = 

The main feature of the exact solution given by equation (14) is a very severe near-wall gradient at high 
Hartmann numbers H. From the computational point of view, for such boundary layer solutions a certain 
grid refinement should be used as the near-boundary gradient becomes sharper (increasing H ) .  The 
order of the solution error coincides with the order of the truncation error if the grid spacing is 
sufficiently small. In the case at hand, at high values of H one can expect that the estimated numerical 
solution error will be achieved only for a very fine grid. 

In Figure 1, for different grid spacings, we plot the numerical solution error Error= IJuy - ~ f & , , , ~ ,  
where the exact solution u:: is evaluated from equation (14) at each (i, j)th node. We consider a square 
(a = b = 1) duct and hence h, = hy = h = 2/N.  Figure 1 clearly illustrates the superiority of the 
suggested high-order discretization. Let us assume that an engineering accuracy of 0.1% (i.e. 
Error = lop3 in Figure 1) in the RMS error of the computational solution is required. Then, as can be 
deduced from Figure 1,  for the severe case of H = 10, i.e. a sharp near-wall gradient, h x 1/3 is 
required if the presently proposed a!? -stencil is used, in contrast with h x 1/35 which is required if the 
standard five-point discretization is applied. Since, as mentioned above, h = 2 / N ,  this implies that the 
proposed discretization scheme enables a reduction of the mesh from 70 x 70 to 6 x 6 while keeping 
the error at the 0.1% level. 

It should be noted that it is difficult to conduct an accurate comparison between the numerical and 
exact solutions of the problem given by equation (1 3), because the rate of convergence of the infinite 
series (14) decreases for higher values of H .  One can see that the standard five-point finite difference 
discretization scheme provides a numerical solution error of O(h2) as predicted (the slope of the five- 
point FD curves is equal to 2) .  The high-order o$)-stencil discretization gives an accuracy of 
approximately O(h3) and not of O(h6) as predicted. This discrepancy deserves an explanation. The 
O(h6) accuracy will apparently be achieved at h <0.01 (i.e. - log@) > 2 in Figure 1). However, the slow 
convergence of the infinite series given by equation (14) requires accounting for many terms in the 
series (especially for high values of H ) .  This in turn leads to an inevitable accumulation of machine 
round-off errors. In addition, the very small expected accuracy (less than O(10-l2)) makes the 
numerical implementation very difficult. 
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" ~ " " ~ " " , " "  
......_..._ ~. : H=l = 5-pdnt FD (standard rnethqd) 

. p , i  $ 1  : - stencil (present method) H=O 

H=10 - - _ _  

Case 2: y2 = H2, ro = -1, Dirichlet boundary condition, soluble example 

two-dimensional problem 
In order to demonstrate the high-order solution accuracy of the proposed o$)-stencil, we consider the 

1 1 1 
u(x, 0) = - , u(x, 1) = sin(nx) + - (15) H2 H 2 .  

u(0,y) = u(1,y) = - 3  H2 

The exact solution is given by 

sin(m) sinh(ay) 1 
sinh(a) H2 f - - ,  a2 = n2 + H 2  u(x,y) = 

In Figure 2, as in the previous example, we plot the numerical solution error Error = llui - u$$ms, 
where de) is the exact solution evaluated from equation (1 6) at each (i, j)th node. The results obtained 

square mesh, h, = hy = h.  On an unequally spaced mesh (h, = 2hy) the numerical solution error with 
the suggested r$)-stencil discretization increases and becomes of the fourth order. The five-point FD 
discretization gives a second-order solution accuracy. 

with the suggested ni (9) -stencil clearly show the sixth-order solution accuracy, Error = O(h6), on a 
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Figure 2. Numerical solution error for different computational meshes (Case 2, Dirichlet condition, soluble example) 

Case 3: y2 = H2, ro = -1, Neumann boundary condition, soluble example 

approximation on the numerical solution error, we consider the two-dimensional problem 
In order to demonstrate the effect of the accuracy of the Neumann boundary condition discrete 

Bu B u  2 
- + - - - H  u = - 1 ,  O < X < l ,  O<y<l, 
ax2 ay;! 

uy(x, 1) = usin(m)coth(u). (17) 1 1 
u(x, 0) = - 

H2 ’ u(0,y) = u( l ,y)  = -, H2 

The exact solution of the problem is given by 

sin(m) sinh(uy) 1 
sinh(u) H2 +--, u2 = x2 + H 2 .  U(X9.Y) = 

For the numerical solution we use a square mesh, h, = hy = h. In Figure 3 we plot the numerical 
solution error Error = llui - Ilms. Only the calculations obtained with the suggested nine-point r$)- 

stencil and the sixth-order-accurate Neumann condition discretization result in a sixth-order solution 
accuracy, Error = O(h6). With the second-order-accurate discretization of the Neumann condition the 
numerical solution error with the suggested nine-point c$)-stencil discretization increases and becomes 
of the second-order only. In this case the low accuracy of the boundary derivative discrete approximation 
overrides the high-order accuracy provided by the scheme with the nine-point a:)-stencil. The five- 
point finite difference discretization gives a second-order solution accuracy as expected. 
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- H=l (a) o'l:'. 6th-order BC (prosenl method) 
H=10 (b) 5-point FD. 2nd-order BC (slmdard method) 

(c) u':;, Pnd-orber EC 
10 - t - - - -  

/ 
/ 

4 
/ 

5 1 1 5  2 

-1Wh) 

Figure 3. Numencal solution error for different computational meshes (Case 3. Neumann condition. soluble example) 

5 .  CONCLUSIONS 

We derive the coefficients for a nine-point discretization scheme for an elliptic equation 
V2u - y2u = ro(V2 is the two-dimensional Laplacian operator). The truncation error for the suggested 
scheme is of the sixth order, O(h6), on a square mesh (h,  = hy = h )  and of the fourth order, 
O(h:, h:h$. h;),  on an unequally spaced mesh. The performance of the suggested discretization scheme 
is demonstrated on three examples and is compared with that of the standard five-point discretization 
formula. Examples with Dirichlet and Neumann boundary conditions are considered to demonshate the 
high-order accuracy of the method. 

APPENDIX I: DERIVATION OF THE oj9i)-STENCIL COEFFICIENTS 

Let 

be a discrete equation on the nine-point ojy'-stencil, where 
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The Taylor series expansions on 0;;) are 

0 0 1  
,,,=I m. 

ui*l,j*l = ui, j + C ~ ( * h x D x  f hyDyImui, j '  

Substituting expansions (21) into (20) leads to 

375 

(21) 

Substituting (22) into (1 9 )  and keeping derivatives up to the sixth order in the left-hand side give 

+4b(%@D; +--OX$ h: h; + 
2!2! 4!2! ui, = ro + TE. (23) + (a + 4b + 2c + 2d) 

Using (1 1) enables one to rewrite the high-order derivative operators in the left-hand side of (23) as 

D: = y 2 0 ;  - D;D;, D; = y2Di - @q, 

Substituting (24) into (23) gives 

where g42 = g(hx, hy; b,  c,  d )  and g24 = g(h,,, h,; b,  c,  d) .  We note that for an equally spaced grid, 
hx = hy, owing to x + y symmetry of the elliptic equation, c = d in (19) and hence g42 = g24. 
Therefore it is usehl to rewrite the second term on the left-hand side of (25) as 

because the second term in (26) vanishes on the equally spaced grid. Adding the first term of (26) to the 
mixed derivative term of (25) and moving the second one (which is actually the leading term of the 
truncation error) to the right-hand side of (25) complete the rearrangement of the discrete equation, 
which now reads 

(GllD; + 2G12D;D: + G22D; + Goo)ui, = ro + TE, (27) 

where the truncation error is estimated as 
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The coefficients iPq in ( 2 7 )  depend on the grid spacing h,, hy and on the aig)-stencil coefficients 
a, b. c, d. In order for ( 2 7 )  to become the modified equation of the original equation ( 1  I), we require 

aoo = -7 , 211 = 1, 4, = 0, 222 = 1,  (29) 2 

which is a linear system for four unknown coefficients a, b, c, d. We omit simple algebra and summarize 
the coefficients in Table I. 

APPENDIX 11: NEUMANN BOUNDARY CONDITIONS 

Assume that the Neumann boundary condition du/dylY,, = g(x) is imposed at the boundary y = 0. Let 

(30)  au,,o + b$z) + ~ $ 2  + ds;ob) = ro 

be the nine-point aj9/l-stencil applied at a boundary point (i, 0), where 
x Y) g.0 = ' l - l . - l  + ' I  - 1 . 1  + ' , + I . - l  + U l + I . I .  

q; = '1-1.0 + U , t l . O ?  s$ = U l . - I  + U l , I .  

Here ( k ,  - l) ,  k = I - 1, i, i + 1, denote the fictitious (dummy) nodes which are used in the nine-point 
ajy)-stencil and lie outside the computational domain. The Taylor series expansions for the dummy 
nodes read 

where, and hereafter, h, = h,  k = i - 1,  i, i + 1. From ( 3  1 )  we have 

Using ( 1  1) enables one to rewrite the odd-order yderivative operators in the recurrent form 

u = (;I' - u, m = 2 , 3  , . . . .  D2m- 1 
Y 

Applying (33)  at the boundary pointy = 0 gives 

D$-lu = (v2 - @)"- 'g(x) ,  m = 2 , 3 ,  . . . . 
From (32)  and ( 3 4 )  we obtain explicit expressions for the dummy nodes: 

For the sixth-order-accurate case we have 
3 h2m-I 

*&.-I = ' k . 1  - 'Zl (2,,, - I)! (y2 - D;)"-Ig(x) + O(h6), k = i - 1, i, i + 1.  

Substituting expressions ( 3 6 )  for the dummy nodes into ( 3 0 )  gives the sixth-order-accurate 
discretization of the Neumann boundary condition for (1 1). 
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